W. D. Fitzgerald

~Limited Electronic Scénning
~ with an Offset-Feed
Near-Field Gregorian System

i 24 September 1971

T o s T Y o T e R R ST

: Prepared for the Office of the Chief of Research and Deve)qgment,
Depertment of the Army,
vnder Electronic Systems Division Contract F19628-70-C-6230 by

Lincolan Laboratory

MASSACEUSETTS INSTITUTE OF TECHNOLOGY

Lexington, Massachusetts

r 1A
i
\ g
U g €2 Y 5\23
am*mm S
Reproduced by ;‘i [ R o
NATIONAL TECHNICAL ‘ "“"

INFORMATION SERVICE

Springlicid, Va. 22151



UNCLASSIFIED
Secutity Classification

DOCUMENT CONTROL DATA - R&D

(Security clasaitication of title, body of abetract and indexing annotation must be entered when the overall report ia claaailied)

1. ORIGINATING ACTIVITY (Corporate author) 2a. REPORT SECURITY CLASSIFICATION
Unclassified
Lincoln Laboratory, M.L.T, 2. GROUP
None

3. REPORT TITLE

Limited Electronic Scanning with an Offset-Feed Near-Field Gregorian System

4. DESCRIPTIVE NUTES (Type of report and inclusive dates)
Technical Report

8. AUTHORIS) (Last name, firet name, !nitial)

Fitzgerald, William D.

¢. REPORT DATE 7a. TOTAL NO.OF PAGES |7b. NO. OF REFS
24 September 1971 32 4

9a. ORIGINATOR'S REPORT NUMBERI(S)

Ba. CONTRACT OR GRANT NO. F19628-70-C-0230 Technical Report 486

b, PROJECT NO. 7X263304D215
9b., OTHER REPORT NO(S) (Any other numbera that may be

asgigned this report)

e ESD-TR-71-272
d.

10. AVAILABILITY/LIMITATION NOTICES

Aporoved for public release; distribution unlimited.

11, SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of the Chief of Research and Development,
None Department of the Army

13. ABSTRACY

The scanning characteristics of an offset-feed near-ficld Gregorian antenna excited
with a planar array are investigated. The analysis is based on the assumption that the
ficlds in the near-zone region of the array can be accurately determined by the methods
of ray optics, i.e., geometrical propagation along ray trajectories, Scalar diffraction
theory is used to compute secondary characteristics, For one example considered, a
1/2° beam is scanned over a cone with a half angle of approximatelv 7° as defined by the
—3-dB scan-loss criterion, The effects of changing parameters - mageification, reflec-
tor sizes, frequency, etc. —on the scan characteristics are discassed,  An experiment
which was performed to demonstrate the technique is described.

14, KEY WORDS

electronic scanning beam ~forming networks off-axis feed
Gregorian antenna reflectors ray optics
plapar array

UNCLASSIFIED
Security Classification

25




ABSTRACT

The scanning characteristics of an offset-feed near-field Gregorian
antenna excited with a planar array are investigated. The analysis
is based on the assumption that the fields in the near-zone region of
the array can be accurately determined by the methods of ray optics,
i.e., geometrical propagation along ray trajectories. Scalar diffrac-
tion theory is used to compute secondary characteristics. For one
example considered, a 1/2° beam is scanned over a cone with a half
angle of approximately 7° as defined by the —3-~dB scan-loss crite-
rion. The effects of changing parameters — magnification, reflector
sizes, frequency, etc. —on the scan characteristics are discussed.
An experiment which was performed to demonstrate the technique is
described.
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LIMITED ELECTRONIC SCANNING WITH AN OFFSET-FEED
NEAR-FIELD GREGORIAN SYSTEM

1. INTRODUCTION

Limited~scan-antenna techniques, which combine mechanical and some degree of electronic
beam steering have application in systems which must acquire and track a number of targets
within a limited angular region centered on the mechanical axis. Recently, the near-field Cas-
segrainian antenna which utilizes confocal paraboloids and a relatively small planar-array feed
was shown to have some attractive features as a limited-scan system.‘ Over the limited range
of scan afforded, the system combines the high resolution and (to a large degree) the low cost of
a reflector antenna with the performance capabilities of an electronically scanned array.

Fig. 1. Offset-feed Gregorian geometry.
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To achieve good scan range with the near-field Cassegrainian system, the subreflector and
consequently the blockage ratio must be relatively large, The resulting degradation of the effi-
ciency and sidelobe characteristics is the main disadvantage of this technique. A variation on
the basic theme, which we will investigate here, is the offset-feed near-ficld Gregorian geometry
shown schematically in Fig.1. The subreflector is well into the near-field of the array and both
reflectors are offset sections of confocal, coaxial paratoloids. Dudkovsky2 proposed this con-
figuration for efficiently illuminating a large reflector, and Skahill, et 9_1.3 first investigated the

off-axis properties of the system,
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Fig. 2. Parameters defining offset-feed configuration.
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The advantages of thr offset-feed geometry as opposed to the circularly symmetric Casse-
grainian are: -
(a) Blockage is eliminated; the efficiency and sidelobes are not sacrificed
when using the larger subreflectors required for increased scan coverage,
(b) Spillover, the main cause of scan loss with the Cassegrainian feed, is
markedly reduced because the array can be positioned very close to an
enlarged subreflector.
Both systems enjoy the abserice of "coma" commonly associated with the off-axis properties of
a paraboloid. The offset-feed geometry is applicable to circular sections of paraboloids as well
as to parabolic cylinders. The latter configuration would result in a prohibitive amount of block-
ing with the Cassegrainian approach. »

Interest in this technique was generated by the desire for an electronically scanned array
for the measurements program at the Western Test Range. Field experiments on a multiple-
target complex made at long ranges, e.g., pertaining to area or regional defense concepts, would
require an array with high sensitivity and high resolution, but a limited field of view would suf-
fice. At shorter ranges, measurements associated with the Hardsite defense concept would re-
quire an array with much greater scan coverage but with reduced sensitivity requirements. An
attractive feature of the offset-feed geometry is the possibility of satisfying both of these con-
flicting requirements by rapidly removing the subreflector to expose the array for use in the lat-
ter mode of operation. In simple terms, the array is fitted with a rapidly removable telescope
for long-range viewing and, as with any telescope, the field of view is diminished in proportion
to the magnification.

Our purpose is to evaluate the scanning capabilities of the three-dimensional near-field
Gregorian geometry, i.e., circular sections of paraboloids, with an analysis basad on ray-tracing
techniques and scalar diffraction theory. The analysis is based on the assumption that the fields
in the near-zone region of the array (the distance to the subreflector) are accurately determined
by the methods of ray otpics. We will also describe an experiment which was performed to ver-
ify the technique.

II. ANALYSIS

Figure 2 shows the parameters which define the geometry. Both reflectors shown are sec-
tions of confocal paraboloids which are circular when projected into the x-y plane. The main
reflector is that portmn of the complete paraboloid intersected by the cylinder [x — (f /f ) h] +

= [(f /f ) (d/Z)] ; similarly, the subreflector outline is defined by the cylinder (x + h )2 + yZ =
(dz/Z) The main aperture when defined in this manner is completely utilized for the bores1ght
beam. Just as with the near-field Cassegrainian system, there is no space attenuation with the
offset-feed geometry. The form of the amplitude distribution applied to the array is reproduced
over the main aperture without alteration.

The subreflector is illuminated with a linear phase front by placing it well into the near-field
of the array. The secondary beam is scanned simply by generating a linear phase tilt on the
array. If ©, ¢ are the coordinates which define the phase tilt of the array, and 8', ¢' are the
spherical coordinates defining the secondary-beam position (see Fig. 3), then for small angles,

(]

(fi/fz) o'

=o' +71 . 1)
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Unfortunately, Eq. (1) applies only for a few beamwidths scan from boresight. Over most of the
interesting scan range, the relationship between the two sets of coordinates is nonlinear.

The objective of the ray-~tracing procedure is to determine the amplitude and phase distribu-
tion over the main aperture plane as a function of the known amplitude and linear phase distribu-
tions on the array aperture. Scalar diffraction theory is then used to evaluate the secondary
characteristics of the system. It should be noted that diffraction effects arising from the near-
field assumption and the edge effects associated with both reflectors are not part of the analysis,

l‘
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d h
Fig. 4. Subdivision of array aperture for numerical analysis,

Figure 4 illustrates how the array aperture is divided into a two-dimensional lattice of
equally spaced sampling points. The index M sets the number of rays traced as well as the num-
ber of sampling points on the main aperture, This parameter determines the trade-off between
computational labor and the accuracy of the computed patterns, For each pair of coordinate
points X Yp and for a given 6, ¢, the coordinates of the points of reflection which describe the
passage of the ray through the system are computed and then used to determine the optical path
length Lm'n. The parameters d, h, 1, hz, d2 and the coordinates of points on the array and sub-
reflector are normalized to fz. The coordinates of the main reflector and the assumed aperture
plane are normalized to fi' The phase distribution over the main aperture is given by

«t(x;“'n; y;n,n) = Zw(fZ/A){sine [(xm + _f%) cos¢ +y, sin w] 4 ‘f1/fz’ (Lm,n/fi) . (2)

‘This phase function is simply the sum of the linear phase shift applied to the array and the elec-
trical path length as determined by ray tracing.

The amplitude distribution over the main aperture plane, denoted E' (x;_n’n; y;'n,n
to the assumed distribution on the array by conservation of energy in ray optics, Thus,

), is related

2 N 2 2 .
AXBYET(x, yp) = (1 /0)7 &g By nEVOG iV ) (3)
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m,n ym,n
where
N
Ax = Ay = o7 (d/21)

t = 3! —_ !
m,n xm+1,n xm,n
] - ] - 1
Aym,n - ym,n+1 ym,n
The pattern P(©', ¢') is computed with the well-known expression from scalar diffraction
theory in summation form:

P(e, ¢') = Z E Ax'm,nAY}n.nEi(x}n.n; y;n,n) eXp [—j<b(x;n’n; y;n,n)]
mn

X exp [j21r(f1/fz) (fz/}\) sin@' (x;n,n cos @' + y;n,n sing!) . (4)

By combining Eqgs. (3) and (4) and omitting unnecessary constants,

.M M
IP(GI' ‘P')l =1 Z Z ,Ax;n'nAy;_n'nE(xm,yn) exp [_jd’(x'm,ﬂ; y‘m.n)]

m=1 n=1

X exp [j21r(f1/f2) (fz/A) sine'(x'm n o8 @'+ y}n n sin ¢') (5)

where 6(x;n w y;n n) is given by Eq. (2). Rays which are spilled over either the subreflector or
the fain reflector are excluded in the ray-tracing portion of the program. The coordinates of
a point of reflection on the subreflector Xm0t Y2m n must satisfy the inequality

(g * (/B + Vg o < (01209 (6)

Similarly, a point xim,n; yim,n on the main reflector must satisfy the inequality

(X4m n - (h/1,)1% + yfm_ns w/2t,)? . -

Table I lists the input parameters to the computer program. Following are some comments on
the nature and restrictions of each of these parameters.

The index M determines the number of sampling points over the main aperture. In order to
deal with a manageable computational load, we must restrict the pattern computations to the prin-
cipal lobe and the first few near-in sidelobes. It is difficult to determine precisely the magnitude
of M required. Methods available for numerical evaluation of diffraction integrais such as
Newton-Coates, Gaussian quadrature, et;c.,4 are not directly applicable to our problem. A nu-
merical investigation has shown that a value of M = 30 results in an error of less than 1,0 dB over
the first three sidelobes. A value of M = 15 (approximately one-fourth the computational labor)
accurately predicts scan loss and the form of the main beam, and was generally used when in-
vestigating the effect of varying parameters., A few of the more interesting configurations were
then computed with M = 30,




TABLE 1
INPUT PARAMETERS TO THE COMPUTER PROGRAM
M Typlcally, 15 M 30
® A h il
ra ase tiit

v yP
i"‘/f2 Magnification
h/f2
d/f2
1, ¢ Geometrical parameters
ha/fy
dp/fa ]
f2 /A Frequency tem
K
c Distribution on array

The coordinates 6, ¢ define the normal to the linear phase front assumed for the array and
are not, in general, linearly related to the coordinates €', ¢' which define the position of the sec~
ondary beam. The program is designed to locate the secondary~beam peak with a maximizing
routine before computing pattern cuts.

The linear magnification for the boresight beam (@ = 0) is fi/fZ' The increase in gain of the
system relative to the gain of the array is a function of the magnification only and is given by

G
—2— - 10 log(fi/fz)z . (8)
array

The geometrical parameters determine the size and positioning of the array as well as the
two reflectors. The constraint (7), which defines the outline of the main reflector, can be mod-
ified or removed to investigate the effects of an "oversized" main reflector. When (7) is used,
the main reflector is completely utilized for the boresight beam,

The parameters K and C determine the form of the amplitude distribution applied to the

array. The expression used is
2 K
h 2
[(xm + ?'2-) + yn]

+C . (9
(a/28,)°

Hence K = 0, C = 0 corresponds to a uniform distribution; K=1, C=0isa (1 - pz) distribution;
etc. A full-wave sine difference distribution was also used in some cases to investigate the scan-
ning characteristics of a typical error pattern.




OI. COMPUTED RESULTS
The large number of parameters and the asymmetrical nature of the system preclude a sim-
ple set of curves to describe performance characteristics. We will consider an example in some

detail and then discuss the influence of various parameters.
Figure 5 shows a cross section of the example considered. The magnification is 3.0 and the
main reflector size (136 1) corresponds to a nominal 1/2° beam. An orthographic projection of
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Fig. 5. Parameters of example with magnification
of 3.0 and nominal 1/2° beam.
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the far-field coordinates ©', ¢' is shown in Fig. 6. The —3-dB scan-loss contours are as indicated,
and the circles represent (approximately) the — 3-dB contour of the 1/2® heam. Note that the lin-
ear relationship between coordinate pairs [Eq. (1)] applies only for scanning a few beamwidths
from boresight, Over most of the usable scan range, the relaticnship is nonlinear. For any
plane ¢ = constant, the patterns are computed for 4° increments in Q.

For the boresight beam, a real image (i.e., an airy disk) is created at the focal point of the
reflectors. Ali power transmitted by the array is contained within an area on the order of a
wavelength in diameter. As the array is scanned in the plane ¢ = 7, this high-energy concentra-~
tion, although somewhat diffused, approaches the top edge of the array. Hence, if © is allowed
to exceed a certain value, a condition of near-total blockage can quickly result. The upper bound
on € depends on the magnification and the position of the array. Typical limiting values are 16°
to 18°. The cross-hatched region at the top of Fig. é indicates the approximate region where
blockage can occur. The scan coverage with the (1 — pz) taper as defined by the --3-dB scan-loss
criterion is a cone with a half angle of approximately 7° or 14 beamwidths,

Figures 7, 8 and 9 show the computed natterns for the {1 ~ pZ) distribution in the three prin-
cipal planes. In the vertical plane (Fig,7), ¢ = 0, ¢' = 7 corresponds to scanning the array up
and the secondary beam down. In this plane, the half-power becamwidths are constant, even be-
yond the — 3~dB scan-loss point, but there is clear evidence of phage distortion. The implication
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Fig. 6. Orthographic projection of coordinates
6', ¢' showing nonlinear relationship between
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for parameters of Fig. 5 with K=1, C=0,
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Fig. 8. Computed diagonal-plane patterns for parameters of Fig. 5 with K= 1, C =0,
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Fig. 9. Computed horizontai-plane patterns for parameters of Fig. Swith K =1, C =0,
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is that scan range is limited by phase aberrations. For ¢ = v, the beam broadens with very little
distortion as scan i8 increased, indicating that spillover and aperture reduction are the principal
causes of scan loss. Diagonal-plane patterns (Fig. 8) are very similar to the vertical patterns.
The patterns in the horizontal plane — the only plane of symmetry — apparently have a measure
of both spillover and phase aberrations. Note that in this plane, the patterns are well-defined
and usable beyond the — 3-dB scan-loss point. Computed patterns with different distributions
show similar characteristics. A more severe taper, for example ({1 — pz)z, yields increased
scan range and the "shoulders" on the scanned beam are less prominent. The uniform distribu-
tion results in less scan range and more pronounced distortion. Sidelobes at the - 3-dB scan-
loss point for ¢ = 0 are 12 dB, and increase with greater scan.
Figure 10 illustrates the phase, spillover, and aperture reduction characteristics for a cen-
tral strip in the vertical plane. The edge rays from the feed aperture are shown for +30°, 0* and
—-16°, The aperture reduction and spillover for the —16° case are consistent with the broad,
distortion-free patterns of Fig.?7. Similarly, the large phase errors and relatively slight amount
of spillover associated with the +30° case explain the pattern behavior in the ¢' = r plane.

80° lo— gt

+18°TO + 30°

I

Ot
e \ Oppgl+30%)

L ) \

T2 - - "—240-—1 '

-1
100°-] +30°

+30°

- ‘50\

- (]
e

Fig. 10. Illustration of phase, spitlover, and aperture reduction characteristics
for central strip in vertical plane, D.‘,.f for each cose is as defined by extrems
rays from feed aperture. !

A substantial number of configurations were investigated by varying the parameters listed
in Table I. In all cases, the general pattern characteristics — sidelobes, distortion, beam broad-
ening, etc. — were similar to those found with the example of Fig. 5.

The following sections discuss the general characteristics of the system, and the significance
of changing parameters on the scan range that can be achieved.

10
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A. Reflector Sizes
The inequalitiea (6) and (7) define the outline of the reflectors,

Remaoving these constraints

The scan range under these con=

is equivalent to using extended paraboloids for both reflectors.
However, the

ditions is approximately the same for ¢ = 0 and ¢ = #/2, and increases for ¢ = 7,

scan range in the latter case is principally limited by array blockage. We conclude that there

is little, if any, increase in scan range realized by bhuilding an oversgize main reflector,
Obviously, there is no point in having a subreflector larger than that required to aveid for-

ward spillover. Calculations with and without the constraint (7) indicate that an elliptical sub-

reflector, with its major axis in the horizontal plane, will yield the maximum scan range for a
given subreflector area, The improvement is limited to the horizontal plane and is not of great
significance. For the parameters of Fig.5, an elliptical subreflector improves the scan range
in the horizontal plane by approximately one beamwidth. Typically, the improvement is less
than 10 percent.

For a fixed magnification, the scan range can be increased by inc easing r, and fz in the
The subreflector diameter must increase accordingiy to 1aintain the same forward

Increasing the focal lengths by 25 percent in the exumple of Fig. 5 increases the cone
The disadvantage of increasing scan range in this

same ratio.

spillover,
of coverage from 7° to approximately 8.2°,
way is that the subreflector size must increase and the mechanical configuration becomes

awkward,

B. Magnification

If the focal length f, is changed with all other parameters held fixed, the magnification and

hence the effective aperture change in direct proportion. We found that, to a good approximation,

the scan range in all planes is inversely proportional to the magnification, that is, the number

of beamwidths scanned is constant. Also, to scan the secondary beam to the — 3-dB scan-loss

point, for example, requires approximately the same angle of tilt for the array.

Increasing the magnification with the effective aperture held constant (decreased array diam-

eter) reduces the scan range in a more complex fashion, The reduction in the ¢ = 7 plane is

However, by adjusting the parameters which define the location of the array and sub-

greatest.
Figure 11 shows the

dish, the decrease is not nearly as great as the ratio of the magnifications.
scan range achieved with a magnification of 3.5 and the main aperture the same size as the ex-

ample of Fig. 5. Note that the scan range is not greatly diminished from that shown in Fig. 6,

C. Frequency Dependence
Again using the parameters of Fig.5, the frequency was halved and doubled to generate '*

and 1/4° beams. The resulting scan-coverage diagram is shown in Fig. 12. The scan range is
least sensitive to frequency in the ¢ = 7 plane where spillover and aperture reduction predominate.
In general, the absolute scan range diminishes with increasing frequency but the number of beam-
widths scanned increases. The coverage area shown in Fig, 12, for example, when measured in
square beamwidths, is approximately 600 for the 1/2° beam and 1400 for the 1/4° beam, as de-

fined by the — 3-dB scan-loss criterion,

D. Array Position
The position of the array is not critical, although the favored position is as far back (¢ large)
and as high up (h small) as is consistent with avoiding (1) the blockage condition, and {2) excessive

11




PO $00105 g oy i - o e

y fok i

! .
P $r7mea PARAMETERS
]
1,/ty" 38

1,71 +820
arty 2078
ity 178
n1, s 0738
hy/1, » 0583
115,23

¢brw/2

GI
/
/ / /‘ﬂ—l— -3-48 SCAN-LOSS CONTOUR

/' y ////,/ (K2t,C»0)

T—--L—w—--* Qs3wi2 —
e.
|

Prw/a

Fig. 12, Scan-coverage contours with parameters
listed in Fig. 5. Parameter fz/)‘ is adjusted for
1/4° and 1.0° beams.
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with magnification of 3.5 and 1/2° beam.

O 1/4° BEAM
O 12 sEAM

O 1° BEAM

e e ~3.48 SCAN-LOSS
CONTOURS
(Ks1,C=0)

12




1,1, 30 30
ta/h 82.5 828
a/t, 0866 0.866
dg/ty 178 178
M, 070 079
hy/1, 068 085
11, 080 023

Fig. 13. Scan-coverage contours illustrating
effect of array positioning,

Pryw/2

L334
(¢:0)

forward spillover. Figure 13 shows the typical change in the scan contour as the array is re-
positioned. The parameters are similar to those of Fig. 5, with the subreflector diameter in-
creased to 90A. Most of the apparent increase in scan range for the "favored" position cannot

be realized because of the blockage condition,

E. Difference Patterns

Figures 14 and 15 show difference patterns in the principal planes with full~-wave sine distri-
butions. System parameters are the same as those of Fig. 5. The variation in null depth and
unbalance in the plane ¢ = 0 ie the result of the asymmetrical phase and spillover characteristics
in that plane.

The null fill-in with scan in the ¢ = 7 plane is the result of spillover past the bottom of the
main aperture, and aperture reduction (Fig.10). The good balance is indicative of the absence
of phase errors when scanning in this direction. Error patterns in the horizontal plane (Fig. 15)
are not as well balanced but have deeper nulls and are relatively well behaved, just as with the
corresponding sum patterns.

The null positions (0') and the locations of the difference pattern peaks (¢') coincide with the
corresponding sum-~pattern peaks to within approximately one~tenth of a beamwidth, This is the
accuracy to which the computer program determines beam location.

IV. EXPERIMENT

Figure 16 shows the equipment usecd for an experimental demonstration. The reflectors are
precision (surface tolerance £0,010~-inch peak) fiberglass laminates. The diameter of the main

13
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reflector is 48 inches (projected on the aperture plane) which generates a nominal 1/2° beam at

the test frequency of 35.0 GHz. The array is simulated with a 12-inch-diameter paraboloid with
a conventional focal point feed. The feed dish is mounted to permit rotation about any axis in its
aperture plane. The subreflecltor is mounted in the same manner to facilitate initial focusing of
the system. The following parameters were used in the experiment:

f, /f2 4,0

it

hz/fZ = 0.583

h/fZ = 0,75
1/t, = 0.23
dz/'fz = 2,041
d/f, = 0.875
f,/A = 40.71

Figure 17 shows the measured boresight patterns, The primary patterns have similar char-
acteristics, i.e., sidelobes are >24.0dB and the H-plane pattern is approximately 10 percent
broader than the E-plane pattern. This indicates that the feed-aperture distribution is accurately
reproduced in form over the main aperture, The computed and measured positions of the second-
ary beams are shown in Fig, 18, Agreement is to within approximately one-tenth of a beamwidth,
which is about the limit of experimental accuracy. Comparisons of experimental and theoretical
patterns (computed using the parameters listed above with K = 1, C = 0) in the vertical and hor-
izontal planes are shown in Figs. 19 through 22, When the feed dish is scanned downward in the
vertical plane (¢ = m), the top of the feed aperture is moved into the region of high-field density,

15




g

| ""—""'T_"" |
1831
sda [e-3-1203)
. ELEVATION PLANE (E-plane)
HORIZONTAL PLANE (H-piar.e}
o
184
a8
20|
c2nle
i
~30
[ )-7) SV

S0 0 10
8'(deg)

Fig. 17. Measured boresight patterns in two principal planes at 35.0 GHz.

-3-dB SCAN-LOSS
CONTOUR

(Ke3,Cr0)
sz
PIY Fig. 18. Comparison of theoreiical
H 32— and experimental secondary=-beain
B [oe positions.
s @ v /“, / / / // /
e S
2@ L
. A EXPERIMENT L BEAM
16°(%) A ’ LOCATIONS
20°() A (5) THEORETICAL BEAMS
2403 /'/ a
ze'é LT
. 4;'-517/4
"‘W

16




a8

a8

“10

!‘

(L N
4

1
Tit-i-ta208)

Ll ]
6

4 2 o 2
8’(deg)

Fig. 19. Theoretical vertical~plane patterns with K= 1, C = 0. Parameters
are those used in experiment (see p. 15),

| T Ll T T — R ! -
. THEORETICAL
- ‘ [\ scan Loss
bt v gl i e ol e — — vy
8- 8116° 120 8e q° 0 4 8 | heelhee 0 28 320
i -
18 p— A
<2 f- h /
2% b= [ I
L4 1 1 L | 1 ] | Il | 1 1 1 1
B L L] 2 4] 2 L} L] )
8’ (deg)

Fig. 20, Measured vertical -plane patterns,

17




T 1 [ |
240 200
Fig. 21. Theoretical horizontol-plane patterns
with K=1, C=0, Parometers are those used
in experiment (see p, 15),
1 ] | |
[ 8 10
Tu-wm] :
T T T T T :
o ,
— — - —— }
s ]
8 =0° q° [ 3 12* 16°] ja20* §
e
!
18 - ‘
Fig. 22. Measured hiorizontal-plune patterns, <2 J |
-20 — ;
Y- /V //‘ l
or— '
L | t L I 1 i | i
2 [+] 2 4 [ 1 ]
8'tdeg) ."‘

18




oo ORI N OO o, PG R R N LT R I i s

[ —

B T R N ——

hence, the blockage condition vccurs sooner than would be the case with an clectronicadly scanned

array.
In general, the theoretical and the measured characteristics are in close agreement, Scan
range, beam broadening and sidelobe behavior are essentially as predicted.  lack of agreement

as the result of different tapers (K = 1, C = 0 was used for the computations and the actual dis-

tribution i3 nct circularly symmetric) and the simulation of phasce scanning with mechanical scan
‘ is negligible, A cos@ factor in projected aperture is the principal difference between mechanical

and electronic scan which should not be of great significance in view of the spillover-phase char-

[ SR acteristics depicted in Iig. 10.
b % Patterns were measured in the plane orthogonal to the plane of scan at the extreme scan
positions. In all cases, sidelobes were lower and heamwidths were equal to or less than the cor-

responding pattern in the plane of scan.

V. SUMMARY AND DISCUSSION

R The combination of array and reflector techniques in the near-field Gregorian configuration
k has been demonstrated to perform exceptionaliy well as a limited-field~of-view system. The

important characteristics of the system are summarized as follows:

' P Although the feed array is scanned with simple row-column beam-steering
. commands, the nonlinear relationship between the ©, ¢ and 6, ¢' coordi~

: nates introduces some complication to the beam~steering unit, Polyno-
mial curve-fitting techniques or a "look-up" table will be required to locate
the position of the main beam.

The main aperture is completely utilized for the boresight beam. There
appears to be little, if any, increase in scan range with an oversized
main reflector.

The sidelobes are well behaved in all planes of scan, The effects of "coma"
are noticeably absent,

Varying the magnification (changing fy) with all other parameters held fixed
changes the effective aperture in direct proportion. The scan range meas-
ured in beamwidths is constant under these conditions.

i With an effective aperture and magnification held fixed, the scan range
' can be improved by increasing the focal lengths in the same proportion,
% This results in a larger subreflector and a more awkward mechanical
configuration.

The frequency dependence of scan range follows a complex fractional
power law which is dependent on the choice of parameters and the plane
of scan. In general, the absolute scan range diminishes but the number
of beamwidths scanned increases with increasing frequency.

e .

The related near-field Cassegrainian system1 is better suited for modifying a radar in the

: field for limited-scan capability. The offset-feed geometry is less suitable for this purpose and
presents a less attractive geometry for pedestal mounting. However, performance character-
istics — scan range, sidelobes, efficiency, etc. — are considerably improved,

-~ Further improvement in performance may be achieved by shaping the subreflector, i.e.,
using a computed nonparabolic contour, to minimize phase aberrations. This is8 suggested by

7 the fact that the extremes of scan use different portions of the oversized subreflector. This

e S

approach has not been investigated.
The analysis considers a coaxial reflector system. The feed and subreflector could be ro-

tated as a unit about the focal point without affecting collimation for the boresight beam. A slight
amount of space attenuation would be introduced. The possibility of improving scan r“aracter-
istics with such a rotation is also open for study.
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APPENDIX
RAY-TRACING PROCEDURE

Referring to Fig. 3, we compute the path length of a general ray from a point (x,y,~1) on
the array aperture through the two-reflector system to the corresponding point in the main aper-
ture plane (x', y', 2' = 0). The origin of the coordinate system coincides with the focal point of
both reflectors. The main aperture plane is arbitrarily chosen to be in the focal plane or the
x-y plane, A point on the subreflector is denoted (xz, Yp zz). Similarly, (x,,yi, Zl) defines a
point on the main reflector. The equation of the main reflector is

2 2

X ty
LI S (A-1)

2, F g
1 4('1 1

and the equation of the subreflector is

Coxp4yf
2=l -~ - (A-2)

2
The spherical coordinates ©, ¢ define the direction of the general ray emerging from the
aperture. This ray is perpendicular to the assumed linear phase tilt and hence is parallel to
ab =1sin@cosy +]sin@sing + k coso . (A-3)

Lower-case letters denote unit vectors, and i, j, k are the unit vectors parallel to the coordinate
axes. {
The component ray from the point A on the array to the point B on the subreflector is given

by

AB=1xy —x) +]ly, = y) +k(z; + 1) . (A-4)
The unit vector AB/|AB| is equated with Eq. (A-3). This yields three cquations which define a
line in three-dimensional space. Only two of these equations are independent:

tang (x, ~x) = (y, =)

1

tan@ cosg X2 "X = (2 +0) . (A-5)

Solving Eqgs. (A-5) and (A-2) gives the coordinates of the first point of reflection B:

_B + JB — 4AC

2A

*2

y2=y+(xz-x) taneg
2 2

X2t

f -~ (A-6)
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A=(1+ tunzw
( 2 4[2 )
B = {2y tan¢ — 2x tan” ¢ + Eno cos o
4f,x
1.2 2 2 2
C = [y + X tan ¢ -~ mﬁ - ‘“‘Z(fz + 1) - 2xy tan:p]

Snell's law of reflection relates the incident, reflected, and normal unit vectors at the point
X5, Y, %5 0N the subreflector

be = ab - 2ii,(fi, - ab) (A-7)
The unit normal (ﬁE) on the subreflector surface is

ix, + 3y, + kK(2f,)
- - 2 2 2 ) (A-8)

2 2 2
X, fyz + 4fz

By using Eq.(A-3), the components of the unit vector bc are

2x
. 2 . . .
(bc)x - 8in® cos ¢ — 7-:_2—-_}—4;2. [xz 8ino cos ¢ +y, sin@ sing + Zfz cos 9)
X2t 2
o 2y, . o >
(bc)y = 8$in@® sin ¢ — 33 [xZ sin® cos ¢ + ¥p sine sing + fz cos 0]

2
Xy ty, + 4f2

4af
{b¢). = cosO - z [x, sin® cos ¢ + y, s8in@ sing + 2f, Ccos 0O} . (A-9)
Z 2 2 2 2 2 2
Xy tyy + 41‘2

The component ray BC is ;

BC - f(x1 —xz) +](y1 -yt E('/.1 -z, (A-10)
Equating the unit vectors ﬁ(—?/lBCI = be, we again have three cquations 'efie - line in space,

only two of which are independent. Thus,

(be) |

M), X1 TX) =Y 7Y, %

X !

(bc) Rt

r&-;: (xg =xp) =2y ~2, . ;

Solving Fgs.(A-11) and (A-1) gives the coordinates oi the point -« - .

tor (:
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_ =B zNBl_daC

X = 2A

(be)
=y chix (xg =)

<
ey
L]

X, ty
=4 71 -1, : (A-12)
1

Zy T AT

(be) 12
1 =
av=l1s [(B_xc)x]

where

(be) (bc) 12 (bc)zl
B! = {2y TTX - 2% l ] - 4f :
2 (bc < 2 |(bc N 1 (bc)x’
{bc) (bc) (bc), 32
_ oz _ 2 y 2 _
C' = 14f,x, Bey, 2X,Y5 (be . +x, [(bc)x] ty, =4, +2z,)

Snell's law of reflection at the point X42Yq0 2y is written
cd = be — 2, (R, * bc) . (A-13)
The unit normal at the point of reflection on the main refiector is

i=x,) +jl=y,) + k@f,)

ﬁi i 2 2 2 (A-14)
X, ty # 4:‘1
By using Eqgs. (A-9) and (A-14), the components of the unit vector cd are found:
Zx1
(cd)x = (bc)x - m [xi(bc)x + y1(b<:)y - Zfi(bc)z]
(cd), = (be), - —z——?-yz‘————z [x,(be) +y,(bc) —2f,(bec),]
y Yo x4yl + 4 X y z
41'1
(cd)z = (bc)z +mz- [xi(bc)x + yi(hc).y - Zfi(bc)z] . (A-15)
The component ray CD ig
CD = Ix' ~x,) +j(y' = yq) + ki(=2) (A-16)

where the main aperture plane is defined as the plane z' = 0. The equation CD/|CD]| = cd yields
two equations which are sufficient to determine the coordinates in the aperture plane z' = 0:
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(cd)
e (' = X,)
(cd)x 1

LI
y Yy

(cd),
U—- Y (xl -x ) -
(cd)x 1

1
i
N

from which '
{cd),

X'z X, = —= 2
1 (cd)Z 1

(Cd),!
¥yt mx (x' -—xi)

<
n

z'=0

The optical path length is simply the sum of the component path lengths. Hence,

L= |AB| + |BC| + |CD]| (A-17)
?
i
i
f
\
3
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